Nanoelectronic Device Technology

IEEE EDS WIMNACT 23

@Heritage Institute of Technology

April 9, 2010

Frontier Research Center

Tokyo Institute of Technology

Hiroshi Iwai

Tokyo Institute of Technology Founded in 1881, Promoted to Univ. 1929

Institute Overview

Established in 1881→ 130th anniversary in 2011

3 undergraduate schools

School of Science, School of Engineering, School of Bioscience and Biotechnology

Einstein Visit

7 graduate schools

Science and Engineering Science, Science and Engineering Technology,

Bioscience and Biotechnology, Interdisciplinary Graduate School of Science and Engineering,

Information Science and Engineering, Decision Science and Technology, Innovation Management

Total Number of Students

	Undergraduate	Graduate	Master's	Doctoral	Teaching Staff	Student/Instructor	Staff
Tokyo Inst.	5,000	5,000	3,500	1,500	1,200	8.3	550
Per Year	1,200		1,800	500			

Lee De Forest

Electronic Circuits started by the invention of vacuum tube (Triode) in 1906

Thermal electrons from cathode controlled by grid bias

Same mechanism as that of transistor

Today's transistor: MOSFET for CMOS LSI

0 bias for gate

Surface Potential (Negative direction)

Positive bias for gate

When NMOS is ON, PMOS is OFF When PMOS is ON, NMOS is OFF

Downsizing of the components has been the driving force for circuit evolution

1900	1950	1960	1970	2000
Vacuum Tube	Transistor	IC	LSI	ULSI
10 cm	cm	mm	10 µm	100 nm
10 ⁻¹ m	10 ⁻² m	10 ⁻³ m	10 ⁻⁵ m	10 ⁻⁷ m

In 100 years, the size reduced by one million times. There have been many devices from stone age. We have never experienced such a tremendous reduction of devices in human history. Downsizing

1. Reduce Capacitance

- → Reduce switching time of MOSFETs
- → Increase clock frequency
 - Increase circuit operation speed
- 2. Increase number of Transistors
- → Parallel processing
 - Increase circuit operation speed

Downsizing contribute to the performance increase in double ways

Thus, downsizing of Si devices is the most important and critical issue:

Scaling Method: by R. Dennard in 1974

6 Years:k= 0.7 ² =0.5		
$Vdd \rightarrow 0.5$		
Lg $\rightarrow 0.5$		
Id $\rightarrow 0.5$		
$Cg \rightarrow 0.5$		
P (Power)/Clock		
$\rightarrow 0.5^3 = 0.125$		
τ (Switching time) $\rightarrow 0.5$		
N (# of Tr) \rightarrow 1/0.5 ² = 4		
f (Clock) \rightarrow 1/0.5 = 2		
P (Power) → 1		

Many people wanted to say about the limit. Past predictions were not correct!!

Period	Expected limit(size)	Cause
Late 1970's	1µm:	SCE
Early 1980's	0.5µm:	S/D resistance
Early 1980's	0.25µm:	Direct-tunneling of gate SiO ₂
Late 1980's	0.1µm:	'0.1µm brick wall'(various)
2000	50nm:	'Red brick wall' (various)
2000	10nm:	Fundamental?

Downsizing limit!

Channel length Gate oxide thickness

-Two candidates have emerged for R & D

- 1. Nanowire/tube MOSFETs
- 2. Alternative channel MOSFETs (III-V, Ge)
- Other Beyond CMOS devices are still in the cloud.

Semiconductor Technology - Length Scales

(source : European Nanotechnology consortium)

FinFET to Nanowire

Increase the Number of quantum channels

Maximum number of wires per 1 µm

Surrounded gate MQS

Increase the number of wires towards vertical dimension

Landauer Formalism for Ballistic FET

Carrier Density obtained from E-k Band

Carrier Density obtained from Band Diagram

IV Characteristics of Ballistic SiNW FET

Small temperature dependency 35µA/wire for 4 quantum channels

Model of Carrier Scattering

Linear Potential Approx. : Electric Field E

Résumé of the Compact Model

$$I = \frac{q}{\pi \hbar} \sum_{i} g_{i} \int [f(\varepsilon, \mu_{s}) - f(\varepsilon, \mu_{D})] T_{i} d\varepsilon \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left\{\frac{\sqrt{2r + t_{ox}} + \sqrt{t_{ox}}}{\sqrt{2r + t_{ox}} - \sqrt{t_{ox}}}\right\}}.$$
Planar Gate

$$(V_{G} - V_{i}) - \alpha \frac{\mu_{S} - \mu_{0}}{q} = \frac{|Q_{f} + Q_{b}|}{C_{G}}. \qquad \mu_{S} - \mu_{D} = qV_{D} \qquad C_{G} = \frac{2\pi\varepsilon_{ox}}{\ln\left(\frac{r + t_{ox}}{r}\right)}.$$
GAA
(Electrostatics requirement)

$$Q_{f} + Q_{b}| = \frac{q}{\pi} \sum_{i} g_{i} \left[\int_{-\infty}^{\infty} \frac{dk}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \int_{-\infty}^{0} \left\{\frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{S}}{k_{B}T}\right\}} - \frac{1}{1 + \exp\left\{\frac{\varepsilon_{i}(k) - \mu_{D}}{k_{B}T}\right\}}\right\}} T_{i}(\varepsilon_{i}(k))dk$$

$$T(\varepsilon) = \frac{\sqrt{2D_{0}}qE}{\left(\sqrt{B_{0} + D_{0}} + \sqrt{D_{0}}\right)qE + \sqrt{2mD_{0}}B_{0}\ln\left(\frac{qEx_{0} + \varepsilon}{\varepsilon}\right)}$$
(Carrier distribution in Subbands)

Unknowns are I_{D} , (μ_{S} - μ_{0}), (μ_{D} - μ_{0}), および (Q_{f} + Q_{b})

I-V_D Characteritics (**RT**)

Cross section of Si NW

First principal calculation, TAPP

D=1.96nm D=1.94nm D=1.93nm [001] [011] [111]

Si nanowire FET with 1D Transport

SiNW FET Fabrication

Brief process flow of Si Nanowire FET

- S/D&Fin Patterining (ArF Lithography and RIE Etching)
- Sacrificial Oxidation & Oxide Removal (not completely released from BOX layer)
- Nanowire Sidewall Formation (oxide support protector)
- Gate Oxidation (5nm) & Poly-Si Deposition (75nm)
- Gate Lithography & RIE Etching
- Gate Sidewall Formation
- Ni SALISIDE Process

(a) Fin structure formed on BOX layer. (b)XTEM image of fin shown in (a) (c) XTEM image after sacrificial oxidation (d) Cross sectional SEM image after partial removal of sacrificial oxide (e) XTEM after nanowire sidewall formation

SiNW FET Fabrication

S/D & Fin Patterning

Sacrificial Oxidation

Oixde etch back

Backend

SiN sidewall support formation

Gate Oxidation & Poly-Si Deposition

Gate Lithography & RIE Etching

Gate Sidewall Formation

Ni SALISIDE Process (Ni 9nm / TiN 10nm)

(a) SEM image of Si NW FET (Lg = 200nm)(b) high magnification observation of gate and its sidewall.

Fabricated SiNW FET

 I_{on}/I_{off} ratio of ~10⁷, high I_{on} of 49.6 μ A/wire

Output characteristics of 10x10cm² SiNW FET

Current Issues <u>Si Nanowire</u>

Control of wire surface property Source Drain contact Optimization of wire diameter Compact I-V model **III-V & Ge Nanowire** High-k gate insulator Wire formation technique CNT: Growth and integration of CNT Width and Chirality control Chirality determines conduction types: metal or semiconductor **Graphene:**

Graphene formation technique Suppression of off-current

Very small bandgap or no bandgap (semi-metal)

Control of ribbon edge structure which affects bandgap 40

Thank you for your attgengtion